
International Journal of Theoretical Physics, Vol. 39, No. 8, 2000

Hyperelliptic Curves Describing Coulomb Phase of
N 5 2 Supersymmetric Theories with Classical Gauge
Groups SU(3) and SO(6)

Manu P. Singh,1 O. P. S. Negi,2,3 and B. S. Rajput2

Received April 7, 2000

Breaking N 5 2 SU(3) and N 5 2 SO(6) supersymmetric Yang–Mills theories
to corresponding N 5 1 theories by suitable tree-level superpotentials, the
hyperelliptic curves describing the Coulomb phase of these theories have been
obtained and it has been shown that the mass gap in the N 5 1 confining phase
of these theories vanishes when N 5 1 parameters are properly tuned to approach
the highest critical points.

1. INTRODUCTION

In two remarkable papers Seiberg and Witten [1, 2] obtained exact
information on the dynamics of N 5 2 supersymmetric gauge theories in
four dimensions with the gauge group SU(2) and demonstrated that the
strongly coupled vacuum turns out to be the weakly coupled theory of mono-
poles. Following this work, much progress has been made in understanding
the four-dimensional N 5 2 supersymmetric gauge theories. Recently, we
have undertaken [3] the study of monopoles and dyons in four-dimensional
N 5 2 supersymmetric theory with gauge group SU(2), carried out [4] the
analysis of kinematics of moduli space vacua, and obtained [5] the spectrum
of BPS states of dyons in weak- and strong-coupling regions. A crucial
advantage of using N 5 2 supersymmetry is that the low-energy effective
action in the Coulomb phase up to two derivatives is determined in terms of a
single function (i.e., prepotential) [6]. The dynamics of N 5 1 supersymmetric
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gauge theories of monopoles and dyons in four dimensions has been thor-
oughly explored [7, 8] and exact results have been obtained [9–11] about
their coupling behavior by using holomorphic properties of the superpotential
and gauge kinetic function culminating in Seiberg’s non-Abelian duality
conjecture [10, 12]. In all these exact solutions, the singularities of quantum
moduli space of the theory correspond to the appearance of massless dyons.
Consequently, a microscopic superpotential explicitly breaking N 5 2 to
N 5 1 supersymmetry has been introduced [13, 14] to explore physics near
N 5 2 singularities, and it has been found that the generic N 5 2 vacuum
is lifted, leaving only a singular locus of moduli space as the N 5 1 vacua
where monopoles and dyons can condense. By soft breaking of N 5 2 down
to N 5 1, confinement follows due to monopole condensation.

Perturbing an N 5 2 theory by adding a tree-level superpotential, one
can get [15] a microscopic N 5 1 theory where it is convenient to concentrate
on a phase with a single confined photon. Then the low-energy effective
theory, containing nonperturbative effects, provides us with the data of the
vacua with massless dyons [16]. For the N 5 2 theory broken to N 5 1, two
different Lagrangians have been constructed [2]. Both these lead to the same
physics for the massless modes and differ only in the way they describe the
massive fields. In the present paper, we break N 5 2 SU(3) and N 5 2 SO(6)
supersymmetric Yang–Mills theories to corresponding N 5 1 theories on
perturbing these theories by suitable tree-level superpotentials and obtain the
effective superpotentials for the phase with a confined photon in N 5 1
supersymmetric gauge theories. We also derive the hyperelliptic curves which
describe the Coulomb phase of N 5 2 theories with classical gauge groups
SU(3) and SO(6) and demonstrate how the microscopic parameters in N 5
1 theory are related to the N 5 2 moduli coordinates. It is shown that the
mass gap of N 5 1 theory due to dyon condensation vanishes as we approach
the Z3 critical point in N 5 2 SU(3) theory. It is also shown that the N 5 1
mass gap vanishes at a singular point of N 5 2 SO(6) theory where the single
massless dyon exists. It is demonstrated how to derive the curves for the
Coulomb phase of these N 5 2 Yang–Mills theories with classical gauge
groups SU(3) and SO(5) by means of N 5 1 confining phase superpotential.

2. BREAKING OF N 5 2 SU(3) SUPERSYMMETRY

Let us start with N 5 2 SU(3) Yang–Mills theory and perturb it [15,
17] by a tree-level superpotential,

W 5 g1u1 1 g2u2 1 g3u3 (2.1)
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with

u1 5 tr f; u2 5
1
2

tr f2 ; u3 5
1
3

tr f3 (2.1a)

where f is an adjoint N 5 1 superfield in the N 5 2 vector multiplet and
g1 is an auxiliary field implementing trf 5 0. Thus we have u1 5 0, and u2

parametrises the classical moduli space [3, 5] of dyons when f is the Higgs
field in the supersymmetric theory of dyons. The classical vacuum of the
theory is determined by the equation of motion

W 8(f) 5 0

which leads to

g1 1 g2f 1 g3f2 5 0 (2.2)

or

f 5
2g2 6 !g2

2 2 4g1g3

2g3
(2.2a)

These eigenvalues of f are the roots of the equation

W 8(x) 5 g3(x 2 a1)(x 2 a2) (2.3)

where we have set

g1 5 a1a2g3 (2.4)

g2 5 (a1 1 a2)g3

Substituting these relations in (2.2a), we get the following eigenvalues of f :

f 5 a1, a1, a2

or

f 5 diag(a1, a1, a2) (2.5)

with

a2 5 22a1 for tr f 5 0

This f describes the unbroken SU(2) 3 U(1) vacuum. In the low-energy limit
the adjoint superfield for SU(2) becomes massive and it will be decoupled. We
are then left with an N 5 1 SU(2) Yang–Mills theory which is in the confining
phase and the photon multiplets for U(1) are decoupled.

In order to obtain the relation between the SU(3) scale L and the low-
energy SU(2) scale LL , we first match at the scale SU(3)/SU(2) the W-boson
and then match at SU(2) the adjoint mass Md [18]. We get
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L6 5 L6
L(a1 2 a2)2M 22

ad (2.6)

Let us decompose f in the following manner:

f 5 fcl 1 df 1 df (2.7)

where fcl is given by (2.5); df denotes the fluctuation along the unbroken
SU(2) direction and df is the fluctuation along other directions. Substituting
this result into Eq. (2.1), we get

W 5 Wcl 1
1
2

g3(a1 2 a2) tr df2 (2.8)

where

(df, fcl) 5 0

and Wcl is the tree-level superpotential evaluated in the classical vacuum.
Thus we get

Mad 5 g3(a1 2 a2) 5 W 8(a1) (2.9)

Substituting it into (2.6), we get

L6
L 5 g2

3L6 or
LL

L
5 (g3)1/3 (2.10)

Starting with N 5 2 SU(Nc) Yang–Mills theory and perturbing it by a suitable
tree-level superpotential, we got the following generalizations of (2.10):

LL /L2 5 (g6)1/3 for Nc 5 6

LL /L3 5 (g9)1/3 for Nc 5 9 (2.10a)

LL /L4 5 (g12)1/3 for Nc 5 12

LL /L5 5 (g15)1/3 for Nc 5 15

or in general for Nc 5 3n.

LL /Ln 5 (gNc)
1/3 (2.10b)

But the gaugino condensation dynamically generates the superpotential in
the N 5 1 SU(2) theory, and hence the low-energy effective superpotential
takes the form [18]

WL 5 Wcl 6 2 L3
L (2.11)

which reduces to the following form for equation (2.10);
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WL 5 Wcl 6 2g3 L3 (2.12)

It is exact for any values of the parameters. From this equation we get

^u1& 5
­WL

­g1
5

­Wcl

­g1
5 u1cl

^u2& 5
­WL

­g2
5

­Wcl

­g2
5 u2cl (2.13)

^u3& 5
­WL

­g3
5

­Wcl

­g3
6 2L3 5 u3cl 6 2L3

where uncl 5 ­Wcl/­gn (for n 5 1, 2, 3) are the classical values of un as given
by Eqs. (2.1a). These vacua correspond to the singular loci of N 5 2 massless
dyons. To check this, we plug these results into the N 5 2 SU(3) curve [19, 20],

y2 5 ^det(x 2 f)&2 2 4L6

or

y2 5 [x3 2 ^s2&x 1 ^s3&]2 2 4L6 (2.14)

where s2 5 u2 and s3 5 u3

Substituting relations (2.13) into Eq. (2.14), we get

y2 5 [x3 2 ^u2&x 1 ^u3&]2 2 4L6

5 (x3 2 u2cl x 2 u3cl)(x3 2 u2cl x 2 u3cl 6 4L3) (2.15)

Using Eqs. (2.1a) and (2.5), we have

u2cl 5
1
2

tr f2 5 3a2
1

and

u3cl 5
1
3

tr f3 5 22a3
1

Substituting these relations into Eq. (2.15), we get

y2 5 (x 2 a1)2(x 2 a2)[(x 2 a1)2(x 2 a2) 6 4L3] (2.16)

This curve exhibits the quadratic degeneracy and hence we are exactly at
the singular point of a massless dyon in the N 5 2 SU(3) Yang–Mills vacuum.

In N 5 2 SU(3) theory the N 5 2 highest critical points [21] exist at
^u2& 5 0 and ^u3& 5 62L3. These critical points feature by Z3 symmetry.
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When we approach these points under N 5 1 perturbation, the coupling
constants of Eq. (2.1) become

g2 → 0 (2.17)

and then Eq. (2.1) reduces to

Wcrit 5 g3u3 5 2
2
3

g3a3
1 (2.18)

In N 5 1 theory there exists a mass gap due to dyon condensation and
the gauge fields get a mass by the magnetic Higgs mechanism. In order to
check the behavior of this gap in the limit (2.17), let us consider a macroscopic
N 5 1 superpotential Wm obtained from the effective low-energy Abelian
theory. Let us denote the N5 1 chiral superfield of N 5 2U(1) multiplets by
A1, and N 5 1 chiral superfields of N 5 2 dyon hypermultiplets by M1 and
M 81. Then we have(14)

Wm 5 !2[A1 M1 M 81 1 A2 M2 M 82] 1 g2U2 1 g3U3 (2.19)

where U2 and U3 represent the superfields corresponding to tr f2 and tr f3,
respectively, with their lowest components having expectation values ^u2&
and ^u3&. Then the equations of motion are given by

2g2

!2
5

­a1

­u2
m1m81 1

­a2

­u2
m2m82

2g3

!2
5

­a1

­u3
m1m81 1

­a2

­u3
m2m82

a1m1 5 a1m81 5 0 (2.20)

a2m2 5 a2m82 5 0

where a1 and a2 are expectation values of the lowest components of A1 and
A2; m1 and m2 are expectation values of the lowest components of M1 and
M2; and m81 and m82 are the expectation values of the lowest components of
M 81 and M82.

The D-flatness condition [22] implies that

.m1. 5 .m81., .m2. 5 .m82. (2.21)

Let us consider a singular point where we have only one massless dyon M1,
M 81. Then a1 5 0 and a2 Þ 0, and Eqs. (2.20) lead to

m2 5 0

2
g2

!2
5

­a1

­u2
m1m81 (2.22)
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2
g3

!2
5

­a1

­u3
m1m81

which give

g2

g3
5

­a1/­^u2&
­a1/­^u3&

5
­^u3&
­^u2&

(2.23)

Let us bring the system to Z3-critical points by tuning a parameter e such that

^u2& 5 c2e2, ^u3& 5 c3e3 6 2L3 (2.24)

where e is an overall mass scale and c2 and c3 are constants. These relations
show that as e → 0 we have

^u2& 5 0, ^u3& 5 62L3

i.e., we are at Z3-critical points.
From Eqs. (2.24), we have

­^u3&
­^u2&

V e (2.25)

Substituting this result into Eq. (2.25), we get

g2

g3
V e

showing that g2 → 0 as e → 0. This agrees with relation (2.17). From Eqs.
(2.22), we have the scaling behavior

m1 5 1 2g3

!2 ­a1/­^u3&2
1/2

(2.26)

Following Argyres and Douglas [14] and Eguchi et al. [21], we have

­a1

­^u2&
5 e3/2,

­a1

­^u3&
5 e21/2 (2.27)

Substituting Eq. (2.27) into Eq. (2.26), we get

m1 5 12
g3

!22
1/2

e1/4 (2.28)

showing that

m1 → 0 as e → 0

Thus the mass gap due to dyon condensation vanishes as we approach the
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Z3-critical point in our theory. This shows that the Z3 vacuum of N 5 1
theory, characterized by the superpotential given by Eq. (2.18), is a nontrivial
fixed point.

3. BREAKING OF N 5 2 SO(6) SUPERSYMMETRY

In this section we start with N 5 2 SO(6) Yang–Mills theory and perturb
it by the following tree-level superpotential, which breaks N 5 2 to N 5 1:

W 5 g2u2 1 g4u4 1 ln (3.1)

where

u2 5
1
2

tr f2; u4 5
1
4

tr f4

v 5
1
48

ei1i2j1j2k1k2f
i1i2f j1j2fk1k2

5 Pfaffian f 5 Pff
6 (3.2)

with the adjoint superfield f as an antisymmetric 6 3 6 matrix. The theory
has classical vacua (i.e., moduli space) which satisfy the condition

W 8(f) 5 0

or

[W 8(f)]ij 5 g2fij 1 g4f3
ij 2

l
16

eiji1i2 j1 j2f
i1i2f j1j2 5 0 (3.3)

We choose the following skew-diagonal form of f :

f 5 diag(s2e0, s2e1, s2e2) (3.4)

where

s2 5 10 21
i 0 2

Then the vacuum condition (3.3) leads to

g2e2
0 1 g4e4

0 1
il
2

e0e1e2 5 0

g2e2
1 1 g4e4

1 1
il
2

e0e1e2 5 0

g2e2
2 1 g4e4

2 1
il
2

e0e1e2 5 06 (3.5)

showing that nonvanishing e0, e1, and e2 are the roots of
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f (x) 5 g2 x2 1 g4 x4 1
il
2

e0e1e2 5 0 (3.6)

Concentrating on the unbroken SU(2) 3 U(1) 3 U(1) vacuum with a single
confined photon, we may write Eq. (3.6) in the form

f (x) 5 g4(x2 2 a2
1)(x2 2 a2

2) 5 0 (3.7)

where

g4a2
1a2

2 5
il
2

e0e1e2 and g2 5 2g4(a2
1 1 a2

2) (3.8)

Equations (3.5) and (3.8) lead to

a2 5
il

2g4
; a1 5

!l2 2 4g2g4

2g4
(3.9)

e0 5 e1 5 a1; e2 5 a2

Substituting these values into Eq. (3.4), we get

f 5 diag(s2a1, s2a1, s2a2) (3.10)

which is obviously a traceless 6 3 6 matrix.
Making the scale matching between the SO(6) scale L and the SU(2)

scale LL by following similar steps as taken in the SU(3) case in the last
section, we get

L8 5 L6
L(a2

1 2 a2
2)2(Mad)22 (3.11)

where the factor arising through the Higgs mechanism is calculated in an
explicit basis of SO(6).

For evaluating the SU(2) adjoint mass Mad, let us substitute the decompo-
sition given by Eq. (2.7) into Eq. (3.1). Then we have

W 5 Wcl 1
g1

2
tr(df2) 1

3g2

2
tr(df2f2

cl) 1
l
4

(tr df2)(2ia2)

or

W 5 Wcl 1
1
2

d
dx Ff (x)

x G tr df2

5 Wcl 1 g4(a2
1 2 a2

2) tr df2 (3.12)

which leads to the result

Mad 5 g4(a2
1 2 a2

2) (3.13)

Substituting this relation into Eq. (3.11), we get
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L8 5 L6
L /g2

4 or L3
L 5 g4L4 (3.14)

The low-energy superpotential thus becomes

WL 5 Wcl 6 2 L3
L 5 Wcl 6 2g4L4 (3.15)

where the second term is due to gaugino condensation in the low-energy
SU(2) theory. From Eq. (3.15) we get the following vacuum expectation
values of gauge invariants:

^u2& 5
­WL

­g2
5 u2cl

^u4& 5
­WL

­g4
5 u4cl 6 2L4 (3.16)

^v& 5
­WL

­l
5 vcl

Following the approach of Brandhuber and Landsteiner [23] and also that
of Terashima and Yang [15], we get the following curve for our N 5 2
SO(6) theory:

y2 5 ^det(x 2 f)&2 2 4L8x4 (3.17)

This equation may also be written as

y2 5 [x6 2 ^s2&x4 2 ^s4&x2 2 ^v&2]2 2 4L8x4 (3.18)

where

s2 5 2
u2

2

2
1 u4

s4 5 2
u4

2

24
2 u2u6 1

1
2

u2
2u4 2

u2
4

2
1 u8

6 (3.19)

Using relations (3.16), (3.2), and (3.4) in these equations, we get

^s2& 5 2
1
2

^u2cl&2 1 ^u4cl& 6 2L4

5 2a4
1 2 2a2

1a2
2 6 2L4 (3.20)

^s4& 5 62L4{a4
1 1 2a2

1a2
2 7 2L4 6 L4} (3.21)

5 62L4{2^s2& 6 L4}

Using Eqs. (3.2) and (3.4), we also get
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^v& 5 a2
1a2 (3.22)

Substituting relations (3.20)–(3.22) into Eq. (3.18), we immediately observe
the quadratic degeneracy

y2 ' (x2 2 a2
1)2(x2 2 a2

2) (3.22a)

in the curve for N 5 2 SO(6). It is also obvious that the apparent singularity
at ^v& 5 0 is not realized in the resulting N 5 1 theory. In this case the curve
(3.18) reduces to

y2 5 x4[x4 2 ^s2&x2 1 2L4{6^s2& 1 1 2 L4}]

3 [x4 2 ^s2&x2 1 2L4{6^s2& 2 1 2 L4}] (3.23)

Thus the point ^v& 5 0 does not correspond to massless solutions
The N 5 2 SO(6) theory possesses the highest critical points

^u2& 5 0, ^v& 5 0, ^u4& 5 62L4 (3.24)

Then

^s2& 5 62L4 and ^s4& 5 72L8

and hence the equation of curve (3.23) reduces to

y2 5 x4[x4 2 2L4(x2 1 1) 1 2L8][x4 2 2L4(x2 2 1) 1 2L8] (3.25)

In the N 5 1 superpotential (3.1) this critical condition corresponds to

g2 → 0, l → 0 (3.26)

and

Wcrit 2 g4u4 5
g4

4
tr f4

5 g41a4
1 1

a4
2

2 2 (3.27)

Let us now look at the singular point where a single massless dyon
exists. The vacuum condition in this case may be written as

g2

g4
5

­a1/­^u2&
­a1/­^u4&

5
­^u4&
­^u2&

(3.28)

and

l
g4

5
­a1/­^v&
­a1/­^u4&

5
­^u4&
­^v&

With the parametrization
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^u2& 5 c1e2

^u4& 5 c2e4 7 2L4 (3.29)

^v& 5 ce3

where e is an overall mass scale, and c1, c2, c3 are constants, relations
(3.28) yield

g2

g4
' e2 → 0 and

l
g4

' e → 0 (3.29a)

which are in agreement with Eqs. (3.26). In this limit the gap in the U(1)
factor scale is

m1 5 1 2g4

!2 ­a1/­^u4&2
1/2

' !g4 e1/2 → 0 (3.30)

Thus the N 5 1 gap vanishes at the singular point where a single massless
dyon exists. In other words, the N 5 1 SO(6) theory with the superpotential
(3.27) has a nontrivial fixed point.

4. DISCUSSION

In the Coulomb phase of N 5 2 SU(3) Yang–Mills theory the gauge
symmetry breaks down to U(1) 3 U(1). Near the singularity of a massless
dyon we have a photon coupled to the light dyon hypermultiplets, while the
photon for the U(1) factor remains free. The tree-level superpotential (2.1)
perturbs this theory and we are left with an N 5 1 SU(2) Yang–Mills theory
described by a Higgs field given by (2.5), which is in the confining phase,
and the photon multiplets for the U(1) factor are decoupled. Equation (2.10)
gives the relationship between the SU(3) scale L and the low-energy SU(2)
scale LL. Equations (2.10a) and (2.10b) are the generalizations of this relation
for the cases of SU(6), SU(9), SU(12), SU(15), and the most general case of
SU(3n). Equations (2.13) describe the vacua corresponding to the singular
loci of N 5 2 massless dyons, and the quadratic degeneracy in the curve
(2.16) shows that we are exactly at the singular point of a massless dyon in
the N 5 2 SU(3) Yang–Mills vacuum. In this approach we can explicitly
read off how the microscopic parameters in N 5 1 theory are related to the
N 5 2 moduli coordinates. Equation (2.28) shows that the mass gap of N 5
1 theory due to dyon condensation vanishes as we approach the Z3 critical
point in N 5 2 SU(3) theory. Thus the Z3 vacuum of N 5 1 theory characterized
by the superpotential given by Eq. (2.18) is a nontrivial fixed point.
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The tree-level potential (3.1) breaks the N 5 2 SO(6) Yang–Mills theory
to N 5 1 theory, leaving the unbroken SU(2) 3 U(1) 3 U(1) vacuum with
a single confined photon. The scale matching between the SO(6) scale L and
the SU(2) scale LL is given by Eq. (3.14) with the low-energy superpotential
given by Eq. (3.15), which leads to the vacuum expectation values of gauge
invariants as given by Eqs. (3.16). The hyperelliptic curve for N 5 2 SO(6)
theory is given by Eq. (3.23), showing the quadratic degeneracy (3.22a). At
the highest critical point, given by Eqs. (3.24) for N 5 2 SO(6) theory, the
equation of curve reduces to the form of Eq. (3.25). This criticality corresponds
to the condition (3.26) in the N 5 1 superpotential, given by Eq. (3.1),
reducing it to the form given by Eq. (3.27). Equation (3.30) shows that N 5
1 gap vanishes at a singular point where a single massless dyon exists.

From the foregoing analysis it follows that a mass gap in the N 5 1
confining phase of SU(3) and SO(6) theories vanishes when N 5 1 parameters
are properly tuned. As such, the nontrivial N 5 1 fixed points in both these
theories are exactly identified. It has been shown how to derive the curves
for the Coulomb phase of these N 5 2 Yang–Mills theories with classical
gauge groups SU(3) and SO(6) by means of N 5 1 confining phase superpo-
tential. Transferring the critical points in N 5 2 Coulomb phase to the N 5
1 theories, we have found nontrivial N 5 1 SCFT with the adjoint matter
governed by a superpotential. It is speculated that this SCFT has a connection
with the non-Abelian Coulomb phase of the Kutasov–Schwimmer model
[24, 25].
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